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A node-based smoothed point interpolation method (NS-PIM) is formulated for three-dimensional (3D)
heat transfer problems with complex geometries and complicated boundary conditions. Shape functions
constructed here through PIM possess the delta function property and hence allow the straightforward
enforcement of essential boundary conditions. The smoothed Galerkin weak form is employed to create
discretized system equations, and the node-based smoothing domains are used to perform the smoothing
operation and the numerical integration. The accuracy and efficiency of the NS-PIM solutions are studied
through detailed analyses of actual 3D heat transfer problems. It is found that the NS-PIM can provide
higher accuracy in temperature and its gradient than the reference approach does, in which very fine
meshes are used in standard FEM code available with homogeneous essential boundary conditions. More
importantly, the upper bound property of the NS-PIM is obtained using the same tetrahedral mesh.
Together with the FEM, we now have a simple means to obtain both upper and lower bounds of the
exact solution to heat transfer using the same type of mesh.

Crown Copyright © 2008 Published by Elsevier Masson SAS. All rights reserved.
1. Introduction

Finite element method (FEM) [1] has been widely used to solve
various types of practical problems of engineering and sciences.
However, FEM has some inherent drawbacks due to its strong
reliance on the element mesh. Recently, meshfree methods have
been developed to circumvent some of the problems and have
achieved remarkable progress [2,3]. Examples of meshfree meth-
ods include the smoothed particle hydrodynamic method (SPH) [4],
the element-free Galerkin method (EFG) [5], the reproducing ker-
nel particle method (RKPM) [6], the meshless local Petrov–Galerkin
method (MLPG) [7] and the point interpolation method (PIM) [8],
etc.

The PIM is a mesh-free approach based on the Galerkin weak
form, in which shape functions are constructed to ensure passing
through the nodal values exactly at each node arbitrarily scattered
within a local support domain. Currently, two types of shape func-
tions have been developed and used widely, including polynomial
PIM shape functions [8] and radial PIM shape functions (RPIM) [9,
10]. The PIM shape functions so constructed possess the Delta
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function property, which permits the straightforward imposition of
point-based loads and node-based essential boundary conditions.
By using the nodal integration scheme with strain smoothing pro-
posed by Chen et al. [11], a node-based smoothed PIM (NS-PIM or
termed as LC-PIM originally) has been proposed for 2D elasticity
and thermoelasticity problems [12,13]. The NS-PIM ensures at least
linear consistency and monotonic convergence, and can produce
upper bound solutions to the exact solution in energy norm [14].
Compared with linear compatible FEM, NS-PIM works well using
the triangular mesh in two dimensions and tetrahedral mesh in
three dimensions with better accuracy and higher convergence for
mechanics problems [14].

It is well known that the displacement-based fully compati-
ble FEM model always provides a lower bound solution in energy
norm for the exact solution to elastic problems [1]. As a very im-
portant property, the NS-PIM can give an upper bound solution in
energy norm for the problems with homogeneous essential bound-
ary conditions [14]. The combination of NS-PIM and FEM permits
one to simply obtain a bounded solution in energy norm to practi-
cal problems of complicated geometry, as long as a FEM mesh can
be build.

With the increasing interests in applying rapid energy trans-
port systems in manufacturing processes, analysis of complex heat
transfer problems with the extreme temperature gradients be-
comes more and more important [15,16]. Heat induced cracks and
SAS. All rights reserved.
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Nomenclature

h convection coefficient . . . . . . . . . . . . . . . . . . . . . . W/(m2 ◦C)
ki heat conductivity in xi -direction . . . . . . . . . . . . W/(m ◦C)
k conduction matrix defined in Eq. (17)
ni the xi -component of unit outward normal
Q v internal heat source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . W/m3

qΓ prescribed heat flux on 2nd boundary
q nodal temperature vector
Ta temperature of ambient medium . . . . . . . . . . . . . . . . . . . ◦C
TΓ known temperature on 1st boundary . . . . . . . . . . . . . . . ◦C
w the weighted test function

Greek symbols

Φ vector of the PIM shape functions

ϕ PIM shape function
Γ domain boundary
Π functional operator
δ variational operator
∇ temperature gradient operator

Subscripts

e equivalent energy in Eq. (29)
k nodal smoothing domain and volume

Superscripts

T transpose operator
h convection matrix

Fig. 1. A typical node-based 3D smoothing domain for node k.
warps that degrade or even destroy the structures and components
are required to accurately predicted [17]. Experimental evaluations
of the temperature and its gradient together with the resulted
stress are of considerable difficulty for complicated 3D systems.
Computational means is therefore usually preferred for studying
these kinds of systems. Currently, FEM is widely used for this
purpose. However, due to its overly-stiff property of the fully-
compatible FEM models, significant errors can occur in the primary
variable field especially with high gradient regions. FEMs using
assumed strains have been studied to provide more accurate so-
lutions in the gradient of the primary variables. The NS-PIM has
also been used to study thermoelastic problems [13], and found
to be an excellent alternative to the FEM. It possesses very at-
tractive property in terms of convergence, accuracy and most im-
portantly the upper bound property of numerical solutions. Our
results showed that NS-PIM performs well even linear triangular
for two dimensions or tetrahedral meshes for three dimensions are
used [18], and is desired for evaluating foregoing problems.

This work formulates a NS-PIM for 3D heat transfer problems
involving complex geometries and complicated boundary condi-
tions. In the approach, varies types of elements can be used, but
we choose to use four-node tetrahedrons as the background cells
that can be generated using any standard routine available for 3D
solids. PIM shape functions are constructed using polynomial ba-
sis and local supporting nodes selected based on the tetrahedron.
Then discretized system equations are derived according to the
smoothed Galerkin weak form [18]. Finally, the numerical inte-
gration is conducted using the nodal integration procedure [11].
The gradient smoothing technique facilitates the NS-PIM to ob-
tain more accurate temperature and gradient solutions even using
the low-order shape functions. The accuracy of numerical solutions
are studied in detail and compared with those obtained using the
well-developed FEM with the same four-node tetrahedral mesh.
We observed the important upper bound property of the present
NS-PIM in energy norm for 3D heat transfer problems.

2. PIM shape functions

The polynomial point interpolation method is a series repre-
sentation for meshfree function approximation using a set of ar-
bitrarily distributed nodes inside a local support of an interested
point [8]. In the present formulation, the problem domain is firstly
discretized with some scattered nodes, and then the background
tetrahedrons are formed based on these nodes, Finally, a set of
local supports Ωx is constructed using the tetrahedral mesh as
sampled shown in Fig. 1.

Consider a field u(x) defined in this 3D domain Ωx bounded by
boundaries Γx , it can be approximated using a PIM shape function
in the form of

u(x) ≈ ΦT(x)Us (1)
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where Φ(x) are the PIM shape functions that can be expressed as

ΦT(x) = pT(x)P−1
n = {

ϕ1(x) ϕ2(x) . . . ϕn(x)
}

(2)

The derivatives of shape functions can be easily obtained, but
they are not required in the present NS-PIM, owing to the use of
gradient smoothing technique.

The PIM shape functions are constructed using polynomial
or radial function basis [4]. Note that when high order polyno-
mial PIM or RPIM shape functions [9,10] are used, the displace-
ment field is not compatible and the generalized smoothing tech-
nique [18] needs to be used. The theoretical foundation for such
a formulation should be based on the so-called weakened weak
(W2) form that guarantees convergence to the exact solution [19].
In this work, we use only the linear interpolation.

3. Discretized system equations

3.1. Smoothed Galerkin weak form

Heat transfer in an anisotropic solid Ω bounded by Γ is gov-
erned by the following differential equation with a set of boundary
conditions

k1
∂2T

∂x2
+ k2

∂2T

∂ y2
+ k3

∂2T

∂z2
+ Q v = 0

Ω Problem domain studied (3)

T = TΓ

Γ1 Dirichlet boundary (4)

−n1k1
∂T

∂x
− n2k2

∂T

∂ y
− n3k3

∂T

∂z
= qΓ

Γ2 Neumann boundary (5)

−n1k1
∂T

∂x
− n2k2

∂T

∂ y
− n3k3

∂T

∂z
= h(T − Ta)

Γ3 Robin boundary (6)

where ki is the conductivity in xi -direction (i = 1,2,3), Q v is the
inner energy source, ni is xi -component of the direction normal,
TΓ and qΓ are prescribed temperature and heat flux, respectively,
h is the convection coefficient, Ta is the temperature of ambient
medium.

As the differential equation (3) is satisfied at all points over this
problem domain, a weighted residual formulation can be written
as:∫
Ω

wk

[
k1

∂2T

∂x2
+ k2

∂2T

∂ y2
+ k3

∂2T

∂z2
+ Q v

]
dΩ = 0 (7)

where wk denotes a set of weighted functions equal in number
to the total number of nodes. Due to the fact that the PIM shape
functions [8] possess the delta function property, node-based es-
sential boundary conditions can be treated in the same way as in
the usual FEM. Applying Green’s theorem together with the bound-
ary conditions, the residual form Eq. (7) becomes,∫
Γ2

wqΓ dΓ +
∫
Γ3

wh(T − Ta)dΓ −
∫
Ω

w Q v dΩ

+
∫
Ω

(
k1

∂T

∂x

∂ w

∂x
+ k2

∂T

∂ y

∂ w

∂ y
+ k3

∂T

∂z

∂ w

∂z

)
dΩ = 0 (8)

When the PIM shape function is also used as the test func-
tion wk , we have the following functional for Galerkin formulation
Π(T ) =
∫
Ω

1

2

[
k1

(
∂T

∂x

)2

+ k2

(
∂T

∂ y

)2

+ k3

(
∂T

∂z

)2]
dΩ

−
∫
Ω

T Q v dΩ +
∫
Γ2

T qΓ dΓ +
∫
Γ3

hT

(
1

2
T − Ta

)
dΓ (9)

Using the variational principle, Eq. (9) reduces to

δΠ(T ) =
∫
Ω

[
k1

∂T

∂x
δ
∂T

∂x
+ k2

∂T

∂ y
δ
∂T

∂ y
+ k3

∂T

∂z
δ
∂T

∂z

]
dΩ

−
∫
Ω

δT Q v dΩ +
∫
Γ2

δT qΓ dΓ +
∫
Γ3

hT δT dΓ

−
∫
Γ3

hTaδT dΓ (10)

Replaced the temperature gradient presented in Eq. (10) with
the smoothed temperature gradient, the smoothed Galerkin weak
form for heat transfer problems can be obtained as:∫
Ω

δ(∇ T̄ )Tk∇ T̄ dΩ −
∫
Ω

δT T Q v dΩ +
∫
Γ2

δT TqΓ dΓ

+
∫
Γ3

δT ThT dΓ −
∫
Γ3

δT ThTa dΓ = 0 (11)

Substituting Eq. (1) into Eq. (11) and using the arbitrary feature
of variations, a set of discretized system equations can be obtained
finally in the following matrix form:

[K̄ + Kh]{q} = {P} (12)

in which

K̄I J =
∫
Ω

B̄T
I kB̄ J dΩ (13)

Kh
I J =

∫
Γ3

hΦT
I Φ J dΓ (14)

PI =
∫
Ω

ΦT
I Q v dΩ −

∫
Γ2

ΦT
I qΓ dΓ +

∫
Γ3

hTaΦ
T
I dΓ (15)

B̄T
I = { ḡ I1 ḡ I2 ḡ I3 } (16)

and

k =
{k1 0 0

0 k2 0
0 0 k3

}
(17)

where the superscript h is the convective matrix and q the nodal
temperature vector.

To evaluate the smoothed stiffness matrix in Eq. (13), node-
based smoothing domains are used, and hence the integration is
performed also based on nodes, which is detailed in the following
section.

3.2. Nodal integration with gradient smoothing

To carry out the integration in Eq. (13), a background mesh
of 4-node tetrahedrons with a total number of N field nodes is
first generated. This can be obtained easily using any mesh gen-
erator well-developed for FEM. Based on the background tetrahe-
dral mesh, the computation domain Ω is divided further into N
smoothing domain of polyhedrons Ωk (k = 1,2, . . . , N) centered by
node k. Fig. 2 is the schematics of a part of a typical nodal smooth-
ing domain. The domain of the smoothing polyhedron for node k
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Fig. 2. The schematic of one portion of a node-based smoothing domain for node k located in a four-node tetrahedral cell I (k–k2–k3–k6).
inside the cell I is formed by connecting sequentially the mid-
edge-points, the centroids of surface triangles, and the centroids
of cell I . The boundary of the smoothing domain Ωk is labeled
as Γk and the union of all Ωk forms exactly the global domain Ω .

Using the nodal integration scheme, the domain integration
shown in Eq. (13) can be performed numerically as follows:

K̄I J =
N∑

k=1

K̄(k)
I J (18)

in which the summation implies “assembly”, and

K̄(k)
I J =

∫
Ωk

B̄T
I kB̄ J dΩ (19)

where Vk is the volume of smoothing domain of node k.
The generalized gradient smoothing technique that works also

for discontinuous field functions [18] is now applied over the
smoothing domain to obtain the smoothed nodal gradient for the
interested node xk

gi(xk) =
∫
Ωk

gi(x)W (x − xk)dΩ (20)

where gi is the derivative of the field function (temperature) with
respect to xi , and W is a smoothing function. For simplicity, a
piecewise constant function

W (x − xk) =
{

1/Vk, x ∈ Ωk
0, x /∈ Ωk

(21)

is used. Note that it is possible to use more sophisticated W [2]
as long as the conditions for smoothing functions are met. How-
ever, for problems of complicated geometry, the piecewise constant
function is found so far most convenient and resultful to use.

The temperature gradient for node k and for any point in the
smoothing domain is obtained as follows even for discontinuous
assumed functions of temperature [18]:

gi(xk) = 1

Vk

∫
Γk

T ni dΓ (22)

which is constant in the smoothing domain Ωk . Using PIM shape
functions to construct the field function for temperature, the
smoothed gradient for node k can be written in the following ma-
trix form

ḡ(xk) =
∑
I∈Dk

B̄Ωk
I TI (23)

where Dk is the set of all the nodes used in the interpolation for
the field function on Γk . For three-dimensional spaces, the corre-
sponding forms are given by

ḡT = { ḡ1 ḡ2 ḡ3 } (24)[
B̄Ωk

I

]T = [ b̄I1 b̄I2 b̄I3 ] (25)

b̄Ip = 1

Vk

∫
Γk

ϕI (x)np(x)dΓ (p = 1,2,3) (26)

where ϕI (x) is the PIM shape function for node I .
Using Gauss integration along each sub-boundary surface Γk of

the smoothing domain Ωk , Eq. (26) can be rewritten in the follow-
ing summation forms as

b̄Ip = 1

Vk

Ns∑
q=1

[ Ng∑
r=1

wrϕI (xqr)np(xq)

]
(27)

where Ns is the number of the sub-boundary surface Γk , Ng is
the number of gauss points located in each sub-boundary surface
(triangle for global surface, quadrangle for inner integral surface),
and wr is the corresponding weight for the gauss point.

Then the smoothed Galerkin weak form is formulated finally, in
which the smoothing conduction matrix can be obtained as,

K̄(k)
I J = [

B̄Ωk
I

]T
kB̄Ωk

I Vk (28)

where Vk is the volume of smoothing domain for node k.
It can be easily seen from Eq. (28) that the resultant linear sys-

tem is symmetric and banded (due to the compact supports of PIM
shape functions), which implies that the discretized system equa-
tions can be solved efficiently.

4. Numerical implementation

A 3D code has been developed in FORTRAN, and a direct Gaus-
sian elimination solver [20] is used in the present 3D NS-PIM
code. The code is then used to analyze 3D heat transfer problems.
For comparison, the FEM in-house code is also developed to ana-
lyze the same problems using the exactly same solver and meshes
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Fig. 3. Discretized model of a 3D conduction beam subjected to Dirichlet, Neumann and Robin boundary conditions on left, right and top surfaces, respectively.

Table 1
Comparison of the solutions of temperature (◦C) along the AB edge.

x(m) 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Reference 286.30 371.77 393.03 398.28 399.58 399.91 400.02 400.20 400.81 403.16
NS-PIM 287.84 372.16 392.88 398.26 399.57 399.90 400.02 400.20 400.80 403.21
FEM 283.47 371.43 392.91 398.25 399.57 399.91 400.02 400.20 400.80 403.11

Fig. 4. Comparison of the y component of temperature gradients.
as the NS-PIM used. As the analytical solutions of these complex
problems are not available, reference solution is obtained using the
ABAQUS©, in which a very fine mesh with high-order elements is
adopted. The equivalent energy norm for heat transfer model [1] is
defined to evaluate the bound property as

Ue =
∫
Ω

ḡTkḡ dΩ (29)

where ḡ is the smoothed temperature gradient in Eq. (24).

4.1. 3D conduction beam

The first example considered here is a 3D conduction beam
as shown in Fig. 3. The room temperature TΓ is prescribed onto
the left surface, heat flux qΓ continuously enters into the solid
from the right surface and heat convection occurs between the
top surface and the ambient with a convection coefficient h. In
the computation, the parameters are taken as L = 0.1 m, H =
0.01 m, B = 0.01 m, k1 = 15.0 W/(m ◦C), k2 = 10.0 W/(m ◦C),
k3 = 5.0 W/(m ◦C), h = 1500 W/(m2 ◦C), qΓ = −2000 W/m2,
TΓ = 0 ◦C, Q v = 0 W/m3 and Ta = 400 ◦C.

The problem domain is firstly discretized with 508 irregularly
distributed nodes, based on which the 4-node tetrahedrons are
constructed. For comparison, FEM solutions are also computed us-
ing the same tetrahedral mesh. The reference solutions are ob-
tained using a refined mesh of 14 843 irregular nodes.
4.1.1. Temperature
The computed temperatures at the nodes located on the bottom

edge (AB edge in Fig. 3) are listed in Table 1, together with linear
FEM and reference solutions.

It can be found that, the numerical solutions obtained using
the present NS-PIM are in very good agreement with those of the
reference ones. This validates our three-dimensional NS-PIM model
for heat transfer problems.

4.1.2. Temperature gradients
In many manufacturing processes especially for the high en-

ergy density beam manufacturing, large temperature gradient or
temperature difference can be generated in solid components and
structures, which can induce severe thermal cracks at the most
critical locations where the temperature gradient is largest [21].
Therefore, we use maximum error norm to quantify the accuracy
of our numerical solutions. Since it is difficult for experimental
studies on these types of systems to accurately measure the tem-
perature gradient [22], it is preferred to predict the gradient distri-
bution using numerical means. Fig. 4 presents of the y-component
of temperature gradient solution (◦C/m) using the present NS-PIM
and FEM, together with the reference solution. It can be clearly
observed that the y component result obtained using the NS-PIM
matches well with the reference one. Fig. 5 shows the correspond-
ing temperature gradient contour in the z-direction.

It is well known that FEM using tetrahedral elements produces
constant gradient field within the elements, which can lead to
inaccurate results, especially in the high gradient zone. The com-
puted results in Fig. 5 reveal that the present NS-PIM can obtain
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Fig. 5. Comparison of the z component of temperature gradients.

Fig. 6. Comparison of peak temperature gradients between present NS-PIM and linear FEM.
better accuracy than linear FEM especially in the high gradient re-
gion.

Fig. 6 presents the peak gradient (◦C/m) at the same point
in the whole 3D domain. It is shown that the NS-PIM results
agree well with the reference solutions, and are more accurate
than those obtained from linear FEM using the same mesh. Note
that the present NS-PIM formulation is derived from the smoothed
Galerkin weak form, in which the smoothed gradient is obtained
using Eq. (23). The NS-PIM model so constructed behaves much
“softer” compared with the FEM model, and hence produces much
more accurate and more smoothing solution in terms of temper-
ature gradient. The similar phenomenon [13,14,18] has also been
observed for thermoelasticity and solid mechanics: NS-PIM can ob-
tain higher accuracy on displacement gradients or stresses than the
FEM using the same linear mesh.

4.1.3. Solution bound
It is well known that the displacement-based fully compatible

FEM model always provides a lower bound in energy form of the
exact solution to elastic problems. It is, however, much more diffi-
cult to numerically bound the solution from above for complicated
heat transfer problems. To present the very important bound prop-
erty, four NS-PIM models of the conduction beam are built with ir-
regularly distributed nodes (163, 508, 1147 and 2605). Fig. 7 shows
the convergence process of the solution in terms of the equivalent
energy with the increase of the degree of freedoms (DOF). Both
present NS-PIM and FEM are used in this study together with the
reference solution obtained using ABAQUS© with very fine mesh
and high-order elements (14 843 nodes).

It can be clearly observed that the equivalent energy of NS-PIM
model is larger than that of the reference solution; on the con-
trary, the energy of FEM model is smaller than the reference value.
This finding confirms that the 3D NS-PIM formulation can provide
upper bound solution for heat transfer problems [13], which is an
important complement to the fully compatible FEM.
4.2. An engine pedestal

The following subsection analyzes a real engine pedestal with
complex geometries, which is manufactured by the plasma depo-
sition-layered technique [16]. The pedestal part is made of super-
alloy material, and detailed dimensions and processing parameters
can be found in Ref. [22]. Fig. 8 is the schematics of the engine
pedestal.

The CD arc is divided into regularly nine segments to present
the temperature. In the computation, complicated boundary condi-
tions are enforced based on Eqs. (4)–(6), respectively. The parame-
ters and conditions used are the same as the 3D conduction beam
studied in Section 4.1.

4.2.1. Temperature
The problem domain is represented using the background tetra-

hedral mesh with 754 nodes and the nodal temperatures on the
CD arc (shown in Fig. 8) are listed in Table 2, together with lin-
ear FEM and reference ones (30222 nodes). It can be observed that
numerical results are always larger than linear FEM and reference
ones, and linear FEM solutions are the smallest: showing again the
upper bound property of the NS-PIM.

4.2.2. Temperature gradients
The computed temperature gradients (◦C/m) in x-direction are

plotted in Fig. 9 in the form of contour lines for both the NS-PIM
and linear FEM, together with the reference solution obtained us-
ing a very fine mesh (30 222 nodes). It can be clearly seen that
temperature gradients obtained using the NS-PIM agrees well with
the reference ones especially in the high gradient region, and more
accurate than that of the FEM.

Fig. 10 shows the comparison of temperature gradients in z-
direction. It can be observed again that the computed result ob-
tained using the NS-PIM is more accurate than that obtained from
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Fig. 7. Upper and lower bound solutions of the 3D conduction beam obtained using the present NS-PIM and linear FEM, respectively.
Fig. 8. Illustration of the complex part subjected to Dirichlet, Neumann and Robin
conditions on the baseplane, the inner surface of through-hole, the edge surface of
the cap plate, respectively.

the linear FEM, and closer to reference one, especially in the high
temperature gradient region.

Fig. 11 further demonstrates the accuracy of the gradient solu-
tions (◦C/m) at the same point in the 3D domain. It can be clearly
seen that computed temperature gradients using the NS-PIM are
very close to the reference results, which shows that the present
NS-PIM provides more accurate gradient solutions than the linear
FEM.

4.2.3. Solution bound
Fig. 7 has shown that the NS-PIM solution (in equivalent energy

norm) is larger than the reference solution, and in turn the refer-
ence solution is larger than that of the displacement-based FEM.
This numerical finding reveals the bound property of the present
NS-PIM. To further confirm the upper bound property, four models
of this complex problem are generated with irregularly scattered
754, 1389, 2447 and 3287 nodes, respectively. Fig. 12 plots the
numerical solutions against the increasing of DOF for NS-PIM and
FEM as well as the reference one obtained using a very fine mesh
(irregularly distributed 30 222 nodes).

It can be found that, for this complex 3D engine pedestal, the
present NS-PIM again provides an upper bound solution in equiv-
alent energy norm with homogeneous essential boundary condi-
tions (TΓ = 0), and converges to the reference solution with the
increase in DOFs. On the contrary, the FEM solution approaches to
the reference solution from below.

Figs. 7 and 12 show that with the increase of DOFs, equivalent
energy norm of the FEM model and the present NS-PIM model
converges to the reference solution from below and above, respec-
tively. This important property implies also that we can numeri-
cally obtain very accurate solutions using a hybrid model of FEM
and NS-PIM. More important, engineers can readily verify a nu-
merical solution and conduct the adaptive analysis for solutions of
the desired accuracy for complex solid and structures subjected to
complicated thermal conditions and loading. Such an analysis can
always be done, as long as a FEM mesh can be build.

4.3. Comparison of efficiency

A comparison study on computational efficiency is now per-
formed on the same Dell PC of Inter® Pentium (R) CPU 2.80 GHz,
1.00 GB of RAM using models of same DOFs. In order to conduct a
thorough study in an efficient manner, we choose to use 2D prob-
lems [13]. The MFree2D© [3] is therefore used in the tests where a
well-coded “bandwidth” solver with one-column storage technique
is available. Tables 3 and 4 list respectively, the CPU time required
to form the linear system and to solve the resulted system equa-
tions, using NS-PIM, FEM and EFG for the same problem of engine
pedestal part. It can be found from Tables 3 and 4 that (i) the
CPU time is dominated by solving the stiffness matrix of NS-PIM,
and the extra CPU time for the smoothing operations performed in
Eq. (22), computing the stiffness matrix, and assembling the linear
system is very little and negligible; (ii) the CPU time consumed
by equation solver in NS-PIM is about 3–4 times more than the
Table 2
Comparison of the solutions of temperature (◦C) along the CD arc.

Node ID 1 2 3 4 5 6 7 8 9 10

Reference 266.62 277.35 282.46 288.12 293.94 299.55 304.53 308.81 314.54 316.47
NS-PIM 269.89 281.34 285.66 290.89 296.68 302.20 307.16 311.06 316.22 318.74
FEM 262.93 273.46 278.50 284.36 290.31 296.36 301.42 306.23 311.94 313.79
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Fig. 9. Comparison of temperature gradients in y-direction.

Fig. 10. Comparison of temperature gradient in z-direction.
well-developed FEM, and is nine times faster than the widely-used
meshfree EFG [5].

Note that meshfree methods were known [3] to require more
CPU time compared to well-developed FEM for models of same
DOFs. This is because more local nodes are used in the formu-
lation resulting in a reduction of the sparsity in the system ma-
trix. On the other hand, methods using meshfree techniques are
found having a number of attractive features, such as adaptivity to



S.C. Wu et al. / International Journal of Thermal Sciences 48 (2009) 1367–1376 1375
Fig. 11. Comparison of peak temperature gradient for both NS-PIM and linear FEM.

Fig. 12. Upper and lower bound solutions of the 3D engine pedestal obtained using the present NS-PIM and linear FEM, respectively.
Table 3
Comparison of the CPU time (s) to form the linear system.

DOFs NS-PIM FEM

7020 0.297 0.267
20922 0.861 0.768
60572 2.643 2.353
88814 4.270 3.622

Table 4
Comparison of the CPU time (s) to solve the resulting equations.

DOFs NS-PIM FEM EFG (Bucket)

7020 0.533 0.156 4.514
20922 5.177 1.331 41.913
60572 41.672 9.314 356.994
88814 87.143 19.22 851.330

mesh distortion [10], convenience in adaptive analysis [23,24], very
close-to-exact stiffness [25], and upper bound solutions [14], etc.
For NS-PIM, the most significant factor consuming more CPU time
is also the less sparsity in the stiffness matrix due to more local
nodes used in computing the smoothed strain fields. The band-
width of an NS-PIM matrix is about twice of that of an FEM model,
which results in about 3–4 times more CPU time in solving the
equations. This analysis is supported by our numerical test results
given in Table 4.

In terms of computational efficiency (CPU time for the same
accuracy in energy norm) [26], however, meshfree methods can
stand out that depends on method and type of solver used, and
the measure of errors. The NS-PIM was found superior to the FEM
even using a full matrix solver with energy norm as error mea-
sure, as reported in [18]. This is because more accurate results in
temperature gradient and stress [14] can be obtained using NS-
PIM with the same number of DOFs. More importantly, the NS-PIM
model possesses a “softer” stiffness and can produce upper bound
solutions, in contrast to the “overly-stiff” FEM model that produces
lower bound solutions. This is confirmed by both solid mechanics
problems and heat transfer problems in this work.

5. Conclusions

In this work, a NS-PIM is formulated for 3D heat transfer prob-
lems with complex geometrics and complicated boundary condi-
tions, using four-node tetrahedrons. The smoothed Galerkin weak
form is then used to create the discretized system equations. Prob-
lems of actual mechanical parts are analyzed to examine the accu-
racy, efficiency and upper bound property of the NS-PIM. Several
remarks can be made as follows:

1. No derivative of shape functions is required any more due to
the use of the gradient smoothing technique, which results
in more accurate gradient solutions even using the low-order
shape functions, and shape functions used are not globally
continuous.

2. For the problems studied in this paper, the NS-PIM can achieve
higher accuracy in temperature field and its gradients even in
high gradient zone, compared with FEM using the same coarse
mesh.
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3. For the first time, the upper bound solutions in equivalent en-
ergy norm are obtained using the NS-PIM for 3D heat transfer
problems with homogeneous boundary conditions. Together
with the standard FEM, we now have a simple means to bound
the solution for heat transfer problems from both below and
above using the same tetrahedral mesh. This can always be
done as long as a reasonably fine FEM mesh can be created.

4. In contrast with the conventional FEM, the NS-PIM is more
effective to the 3D complex problems, and can efficiently han-
dle complicated boundary conditions of heat transfer prob-
lems.
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